Tetrahedron Letters No. 30, pp. 2841-2844, 1971. Perg mon Press. Frinted in Great Britain.

CIRCULAR DICHROISM CURVES, INFRA RED SPECTRA AND DIPOLE MOMENTS OF DIASTEREOMERIC CYCLOHEXAALANYLS

V.T.Ivanov, V.V.Shilin, G.A.Kogan, E.N.Meshcheryakova, L.B.Senyavina, E.S.Efremov and Yu.A.Ovchinnikov

Shemyakin Institute for Chemistry of Natural Products, USSR Academy of Sciences, Moscow, USSR

(Received in UK 14 June 1971; accepted in UK for publication 24 June 1971)

In a previous communication (2) we have described NMR-studies of a series of cyclic hexapeptides in polar solvents (dimethylsulfoxide, water). The present work was aimed at elucidating their conformational states in non-polar solvents. Diastereomeric cyclohexaalanyls I - III (Fig. 1) were chosen for the investigation, the solubility of other cyclic hexapeptides being inadequate

= D-Ala = L - Ala

for quantitative physicochemical measurements.

The NMR-studies revealed the cyclohexapeptides to be in a conformational equilibrium in which the "pleated sheet" conformation first proposed by Schwyzer (3) is predominant. The CD-curves of this conformer are characterized by week $n - \sqrt{11}^*$ Cotton effects at 210-230 nm and two strong effects of oppo-

site sign at 205-180 nm, associated with the split $\sqrt{h} - \sqrt{h}^*$ transition of amide groups (4).

With less polar solvents (ethanol-heptane, 1:2) the number, signs and positions of the Cotton effects do not change, although their intensities are somewhat redistributed (Fig. 2). The data obtained give grounds to assume that in non-polar solvents cyclic peptides retain the overall structural type *For details see (1)

Fig. 1. Diastereomeric cyclohexaalanyls I - III

and 4 ----1 intramolecular hydrogen bonds (IHB) but that other conformers with somewhat different Φ and Ψ co-ordinates and probably with some additional IHB are favoured.

Fig. 2. CD-curves of compounds I - III in water (a) and ethanol-heptane, 1:2 (b)

This assumption was confirmed by an IR-study of compounds I - III in dilute $(5 \cdot 10^{-4} \text{mole/l})$ CHCl₃ solutions. As seen from Fig. 3 each spectrum shows an intense band in the amide A region $(3250-3480 \text{ cm}^{-1})$ with a maximum at 3340 cm⁻¹. There are also several bands at 3410-3460 cm⁻¹. In the amide I region an asymmetric band with a maximum at 1670-1675 cm⁻¹ was observed which could not be resolved. Basing on the detailed analysis of the IR-spectra of model amides and peptides (5-8) we assigned the 3340 cm⁻¹ bands to the amide NH-groups participating in IHB; bands at 3410-3460 cm⁻¹ to different free NH-groups^{*}. Evaluation of the number of NH-groups from the integral intensities A of the respective bonds according to the A-V_{NH} correlation¹ has shown the cyclic hexapeptides I - III to contain no less that 3 or 4 IHB.

The planar <u>trans</u>-configuration of the amide bonds in the cyclic peptides permits the following possible IHB in addition to the $4 \rightarrow 1$ type present in

French authors (7) have assigned the 3420 cm⁻¹ bands to NH-groups forming 1 — 1 IHB. However, this assignment, inconsistent with the energy computations, does not appear to be sufficiently well founded (8).

Both <u>A</u> and <u>B</u> forms contain 3 - 1 type of IHB, stabilizing seven membered rings. It has been shown (5-8) that amide groups involved in such bonding give IR bonds at 3340-3390 cm⁻¹ in good agreement with the spectra we have obtained for compounds I - III (Fig. 3).

The participation of one amide carbonyl simultaneously in two IHB has as yet not been observed in peptides; however, energy computations show that such structures would have low local potential energy minima (9).

Further information on the structure of compounds I - III was obtained by comparing theim dipole moments measured in CHCl₃ with those calculated for the <u>A</u> and <u>B</u> forms (Table 1). The calculation was made by stepwise summation of the amide dipole moment vectors along the peptide chain in a given conformation. The range of Φ and Ψ values for the <u>A</u> and <u>B</u> forms was estimated from molecular models and relevant theoretical studies (9-12). The data presented

TABLE 1

Experimental dipole moments of cyclo-			Calculated dipole mo	ments of \underline{A} and \underline{B}
hexaalanyls I - III in CHCl ₃ (_M , D)			forms of cyclohexapeptides (μ , D)	
I	II	III	Form A	Form <u>B</u>
4.4 <u>+</u> 0.8	5.0 ± 0.3	5.9 <u>+</u> 0.3	1.0 - 8.0	5.7 - 8.0

in Table 1 show that although form <u>A</u> is more preferable a certain amount of form <u>B</u> could also be present, the low intensity IR band at 3385 cm⁻¹ being ascribable to its unusual $3 \rightarrow 1$ IHB.

It follows from the above said that cyclic hexapeptides in non-polar media have a rather rigid structure consisting of condensed 10-membered and 7-membered rings stabilized by $4 \rightarrow 1$ and $3 \rightarrow 1$ IHB. It is noteworthy that an analogous IHB system was recently found in Na⁺ complex of a biologically important cyclopeptide antamanide (13). Its IR-spectrum in the amide A region is similar to the spectra of cyclic hexapeptides.

REFERENCES

- V.T.Ivanov, G.A.Kogan, E.N.Meshcheryakova, V.V.Shilin and Yu.A.Ovchinnikov, <u>Khim. Prir. Soed</u>. (Chem. Nat. Prod., Russian), <u>1971</u>, in press; V.T.Ivanov, L.B.Senyavina, E.S.Efremov, V.V.Shilin and Yu.A.Ovchinnikov, <u>ibid</u>., <u>1971</u>, in press
- S.L.Portnova, V.V.Shilin, T.A.Balashova, J.Biernat, V.F.Bystrov, V.T.Ivanov and Yu.A.Ovchinnikov, <u>Tetrahedron Letters</u>, <u>1971</u>
- 3. R.Schwyzer, P.Sieber and B.Gorup, <u>Chimia</u>, <u>12</u>, 90 (1958); R.Schwyzer, <u>Record Chem. Progr</u>., <u>20</u>, 147 (1959)
- 4. Yu.A.Ovchinnikov, V.T.Ivanov, V.V.Shilin and G.A.Kogan, <u>Mol. biol</u>. (Russian), <u>3</u>, 600 (1969)
- 5. M.Tsuboi, T.Shimanouchi and S.Mizushima, <u>J. Am. Chem. Soc</u>., <u>81</u>, 1406 (1959)
- 6. S.L.Portnova, V.F.Bystrov, V.I.Tsetlin, V.T.Ivanov and Yu.A.Ovchinnikov, <u>Zh. Obshch. Khim</u>. (J. Gen. Chem., Russian), <u>38</u>, 428 (1968)
- 7. M.Avignon, P.V.Huong, J.Lascombe, M.Marraud and J.Neel, <u>Biopolymers</u>, <u>8</u>, 69 (1969); M.Avignon and P.V.Huong, <u>Biopolymers</u>, <u>9</u>, 427 (1970)
- 8. E.M. Popov, E.S. Efremov, L.B. Senyavina, P.V. Kostetsky, V.T. Ivanov and Yu.A. Ovchinnikov, in preparation.
- 9. G.M.Lipkind, S.F.Arkhipova and E.M.Popov, <u>Mol. biol.</u> (Russian), <u>4</u>, 509 (1969)
- 10. E.M.Popov, G.M.Lipkind, S.F.Arkhipova and V.G.Dashevsky, Mol. biol. (Russian), 2, 622 (1968)
- 11. C.Ramakrishnan and K.P.Sarathy, Int. J. Prot. Res., 1, 103 (1969)
- 12. M. Venkatachalam, Biopolymers, 6, 1425 (1968)
- V.T.Ivanov, A.I.Miroshnikov, N.D.Abdullaev, L.B.Senyavina, S.F.Arkhipova, N.N.Uvarova, K.Kh.Khalilulina, V.F.Bystrov and Yu.A.Ovchinnikov, <u>Biochem</u>. <u>Biophys. Res. Commun.</u>, <u>42</u>, 654 (1971).